首页> 外文OA文献 >On the Convergence of Approximate Message Passing with Arbitrary Matrices
【2h】

On the Convergence of Approximate Message Passing with Arbitrary Matrices

机译:关于任意近似消息传递的收敛性   矩阵

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Approximate message passing (AMP) methods and their variants have attractedconsiderable recent attention for the problem of estimating a random vector$\mathbf{x}$ observed through a linear transform $\mathbf{A}$. In the case oflarge i.i.d. zero-mean Gaussian $\mathbf{A}$, the methods exhibit fastconvergence with precise analytic characterizations on the algorithm behavior.However, the convergence of AMP under general transforms $\mathbf{A}$ is notfully understood. In this paper, we provide sufficient conditions for theconvergence of a damped version of the generalized AMP (GAMP) algorithm in thecase of quadratic cost functions (i.e., Gaussian likelihood and prior). It isshown that, with sufficient damping, the algorithm is guaranteed to converge,although the amount of damping grows with peak-to-average ratio of the squaredsingular values of the transforms $\mathbf{A}$. This result explains the goodperformance of AMP on i.i.d. Gaussian transforms $\mathbf{A}$, but also theirdifficulties with ill-conditioned or non-zero-mean transforms $\mathbf{A}$. Arelated sufficient condition is then derived for the local stability of thedamped GAMP method under general cost functions, assuming certain strictconvexity conditions.
机译:对于估计通过线性变换$ \ mathbf {A} $观察到的随机向量$ \ mathbf {x} $的问题,近似消息传递(AMP)方法及其变体最近引起了相当大的关注。如果是大i.i.d.零均值高斯$ \ mathbf {A} $时,这些方法表现出快速收敛性,并且对算法行为具有精确的解析特征。但是,人们对AMP在一般变换$ \ mathbf {A} $下的收敛性了解不多。在本文中,我们为二次成本函数(即高斯似然和先验)情况下的广义AMP(GAMP)算法的阻尼版本的收敛提供了充分的条件。结果表明,在充分阻尼的情况下,尽管阻尼量随变换$ \ mathbf {A} $的平方奇异值的峰均比的增加而增加,但仍能保证算法收敛。该结果说明了AMP在i.i.d上的良好性能。高斯变换$ \ mathbf {A} $,但它们的难点还包括条件不佳或非零均值变换$ \ mathbf {A} $。然后,在一定的严格凸性条件下,为一般成本函数下的阻尼GAMP方法的局部稳定性推导了一个相关的充分条件。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号